basics, measurement and modelling of BRTF

Dr. Peter Apian-Bennewitz

info@pab.eu

pab advanced technologies Ltd Freiburg, Germany

9th Radiance workshop, Fraunhofer ISE, Freiburg

version optimized for web access, images and contents ©pab Ltd 2010

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 1 / 53

Outline basics 1 introduction photometrics reloaded 2 BRTF math BRTF definition 3 gonio-photometers incidence light sample mount detector system 4 BRTF data and models example data BRTF asymmetric in/out angular resolution getting BRTF into Radiance 5 paths BRTF models example: model fits in 1994 what *Radiance* is missing BRTF basics, measurement, modelling Peter Apian-Bennewitz (pab Ltd) 22.9.2010 2/53

- BRTF = bidirectional reflection transmission function
- BSDF = bidirectional scatter distribution function
- Bxxx = .. whatever..

all the same quantity: scattering of light at a surface

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 3 / 53

what is this talk about ?

sequence to simulation results:

- 1 measure materials
- 2 model material
- 3 add geometry, sky, etc
- 4 use model in simulation
- why bother measuring at all ?
 - 1 measured data better then assumptions
 - 2 no generic BRTF per type of material BRTF depends on surface finish
 - 3 manufacturers specs not always available
 - 4 recheck manufacturers specs
 - 5 compare materials by BRTF data

- solid angle of an object as seen from point *P*: project object onto sphere with radius *r* around *P* $\Omega := \frac{A_p}{r^2}$
- unit: steradian [sr]
- dimensionless, full sphere: 4π , hemisphere: 2π
- □ infinitesimal: dΩ , finite: Ω or ΔΩ
- Solid angle of a cone with opening angle α : $\Omega_{cone} = 2\pi \left(1 - \cos \frac{\alpha}{2}\right)$

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 5 / 53

radiant power

basic unit: power transported by electromagnetic radiation

as described within concept of *photometry* (sometimes known as *radiance flux*)

three spectral flavours:

- spectrally integrated: radiometric [Watt]
- spectrally resolved: power per wavelength interval [Watt/nm]
- weighted by eye response and integrated: *photometric* [Lumen]

derived quantities

quantities used most often:

- \square radiant power per area: \mathcal{E} [Watt/m2]
- radiant power per solid angle [Watt/sr] (Radiant Intensity)
- □ radiant power per solid angle and projected area, $\mathcal{L}(\vec{x})$, [Watt/(sr*m²)] (*Radiance*)
- ... and equivalent photometric units

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 7 / 53

coordinate system

advantages of using these sample coordinates:

- standard polar coordinates
- one BRTF for front and back side of sample
- z-axis: surface normal
 x-axis: marked on sample
- direction written as \vec{x} or (θ, ϕ)

With incident light on the *front* surface: $\theta_{in} = (0^{\circ}...90^{\circ})$:

 $\theta_{out} = (0^{\circ}...90^{\circ}) \text{ reflection,}$ $\theta_{out} = (90^{\circ}...180^{\circ}) \text{ transmission.}$

Other coordinates possible, use transformations.

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 9 / 53

demo

it's all easy ...

defining formula

Definition

$$\mathcal{L}_{out}(\vec{x}_{out}) = \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} BRTF(\vec{x}_{out}, \vec{x}_{in}) \mathcal{L}_{in}(\vec{x}_{in}) \cos(\alpha_{in}) d\Omega_{in}$$

- $\Box \mathcal{L}_{in}$: incident radiance from \vec{x}_{in}
- \Box $d\Omega_{in}$: solid angle of incident light
- \Box cos(α_{in}): historic nuisance (*Lambert* scatterer)
- $\square \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} : \text{ integral over hemisphere}$
- $\Box \mathcal{L}_{out}$: outgoing radiance to \vec{x}_{out}
- \square *BRTF* > 0 and may be > 1
- $\square BRTF_{void}(\vec{x}_{out}, \vec{x}_{in}) = \delta(\vec{x}_{out} \vec{x}_{in}) / \cos(\alpha_{in}), \text{ Dirac Delta function}$
- $\square BRTFc(\vec{x}_{out}, \vec{x}_{in}) := BRTF(\vec{x}_{out}, \vec{x}_{in}) \cos(\alpha_{in})$

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 11/53

approximate formula

$$\mathcal{L}_{out}(\vec{x}_{out}) = \int_{\vec{x}_{in}}^{\Omega_{in}=2\pi} BRTF(\vec{x}_{out}, \vec{x}_{in}) \mathcal{L}_{in}(\vec{x}_{in}) \cos(\alpha_{in}) d\Omega_{in}$$
(1)

- □ assume $\mathcal{L}_{in} > 0$ for small Ω_{in} around \vec{x}_{in}^* only
- and assume BRTF = const over Ω_{in}
- then, and only then

$$BRTF(\vec{x}_{out}, \vec{x}_{in}^*) \approx \frac{\mathcal{L}_{out}(\vec{x}_{out})}{\mathcal{E}_{in}}$$
(2)

But:

This approximation is misleading and should be used with caution.

measured BRTF is always averaged over solid angles of detector $\Delta \Omega_{out}$ and lamp $\Delta \Omega_{in}$:

$$\overline{BRTF}(\Delta\Omega_{in},\Delta\Omega_{out}) := \frac{1}{\Delta\Omega_{in}\Delta\Omega_{out}} \int_{\vec{x}_{out}}^{\Delta\Omega_{out}} \int_{\vec{x}_{in}}^{\Delta\Omega_{in}} BRTF(\vec{x}_{out},\vec{x}_{in}) \ d\Omega_{in} \ d\Omega_{out}$$
(3)

consequences:

this limit measurement of BRTF features. \rightsquigarrow minimise $\Delta \Omega_{out}$ and $\Delta \Omega_{in}$

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 13/53

transmission values from BRTF

transmission τ from Ω_{in} into Ω_{out} is given by:

$$\tau(\Omega_{in},\Omega_{out}) = \frac{\int\limits_{\vec{x}_{out}}^{\Omega_{out}} \left\{ \int\limits_{\vec{x}_{in}}^{\Omega_{in}} BRTF(\vec{x}_{out},\vec{x}_{in})\mathcal{L}_{in}(\vec{x}_{in})\cos(\alpha_{in})d\Omega_{in} \right\} \cos(\alpha_{out})d\Omega_{out}}{\int\limits_{\vec{x}_{in}}^{\Omega_{in}} \mathcal{L}_{in}(\vec{x}_{in})\cos(\alpha_{in})d\Omega_{in}}$$
(4)

Which for the direct-hemispherical transmission results in:

$$\tau_{dh}(\vec{x}_{in}) := \tau(d\Omega_{in}, 2\pi) = \int_{\vec{x}_{out}}^{2\pi} BRTF(\vec{x}_{out}, \vec{x}_{in}) \cos(\alpha_{out}) d\Omega_{out}$$
(5)

visualising BRTF 3D

visualising BRTF 3D

visualising BRTF 2D

2D cuts along scattering plane through 3D dataset I prefer Cartesian plots over polar plots. example:

medium sized intermission

... questions to math part ?

next to come: gonio-photometers

light source types & parameters

beam parameter	Halogen	Xenon	laser diode	gas laser
power	+	++	-	-
radiance	-	+	++	+++
noise	++	+	+	+
polychromatic	+	+	-	-
incoherent	+	+	-	-

choice depends on:

- sample type
- wavelength range
- detector type

in the following: lamps kept at fixed positions alternative concepts: moving lamp, fixed sample

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 19/53

example: pgll lamp subsystem

example: beam profiles

- ☐ fixes sample (securely)
- □ adjusts for θ_{in} , ϕ_{in}
- ~> two degrees of freedom manual adjustment or automatic
- minimal self-shadowing
- shading of stray light

in the following: vertical sample mount assumed

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 23 / 53

<image><image><image><image>

detector parameters

- material and wavelength: Si (VIS), InGaAs (IR), etc
- principle: photo-diode, etc
- sample rate: measurements / second: 1Hz to 1kHz
- noise: noise equivalent BRTF, lowest measurable BRTF
- dynamic range: 10² at least, 10⁸ better

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 25 / 53

<image>

scanning gonio-photometer

measurements-on-the-fly:

- avoid start-stop-cycles
- need excellent sync between position and data-acquisition
- need fast detector

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 27 / 53

discrete BRTF values versus continuous function

discrete BRTF values versus continuous function

- in 3D, $f(x_i, y_i)$ data points do *not* define a unique surface
- Delaunay triangulation recommended
- triangulation used for interpolation and integration
- □ ~→ good triangulation vital for BRTF data processing

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 29 / 53

<section-header>

checking for measurement errors implicitly

checking for measurement errors implicitly

ceiling lights on, 100Hz noise, (see SPIE 2010 paper for more)

getting BRTF from raw data

getting BRTF from raw data

advantages of using unscattered beam as reference

- illuminated area and detector distance cancel out
- no reference samples needed
- sensor identical for reference measurement

very short intermission

... questions to machine&measurement part?

next to come: BRTF data & models

example: aluminium

example: white paint

example: light redirecting, Serraglaze

angular resolution of incident and outgoing side

both sides are not symmetric:

- outgoing side:
 adaptive, high resolution (0.1°)
- incident side:
 low resolution (10^o)

since:

Theorem

in most cases the topology of a BRTF does not change between \vec{x}_{in} and $\vec{x}_{in} + \Delta$, for small Δ (e.g. 20°)

topology of a BRTF

- structure ("topology") of BRTF remains the same for Δ
- shape *parameters* change:
 peak position, peak height, peak width, background level
- $\square \rightsquigarrow$ intermediate θ_{in} are predictable.
- $\square \rightsquigarrow$ measurements of finely resolved θ_{in} are redundant
- don't waste time and data with these think of a good interpolation method

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 41 / 53

getting BRTF into Radiance

problems to solve while importing data:

- interpolation between outgoing directions \vec{x}_{out} : triangulation, etc
- interpolation between incident directions \vec{x}_{in} : not a trivial problem
- optional data compression

ways into simulation program

- loading BRTF data-files directly
- fitting of parameters of internal model (trans, plastic)
- fitting of parameters of external model (cal files)
- loading of compressed/processed data

loading BRTF data-files directly

problems:

- adaptive scans produce non-grid data
- brightdata, brtfdata expect data on regular grids (depends on index function, but index into 100k points is cumbersome)
- no interpolation between incoming directions
- □ ~→ direct import is de-facto not supported

alternative way: interpolate data to regular grid

- coarse grid misses peaks
- fine grid increases memory requirements
- → not a solution

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 43 / 53

fitting parameter of function to BRTF data

process:

- □ fit $f_{a_1...a_N}(\theta_{out}, \phi_{out})$ to one dataset of incident direction \vec{x}_{in}
- $\square \rightsquigarrow$ set of parameters $a_1...a_N$ or each (θ_{in}, ϕ_{in})
- use functions g_i to fit a_i to (θ_{in}, ϕ_{in})
- model complete for outgoing and incident directions
- □ best situation: a_i simple function of (θ_{in}, ϕ_{in})

drawbacks:

- \square requires that *f* and choice of $a_1...a_N$ describe scattering well
- requires thinking for each material. not automatic.
- standard Levenberg-Marquardt method not 100% robust

note: see chapter 5 in author's 1995 dissertation (in German)

example: fits to Pilkington fg3905, fg3906 in 1994

polymer/glass sandwich glazing, forward scattering, "milky" glazing

fg3905 model comparison, in scattering-plane

note: see chapter 6 in author's 1995 dissertation for details

```
Peter Apian-Bennewitz (pab Ltd)
```

BRTF basics, measurement, modelling

22.9.2010 47 / 53

fg3905 model comparison, off scattering-plane

deviation between model and data shown as spikes

fitting is done for *all* outgoing directions (not just in-plane) model may deviate more outside the scattering plane

example: Aerogel model, parameter variation

- current models don't match measured data well
- better built-in models or cal-files seem worth considering

...thanks

last slide.

- physics is fun
- happy rendering
- thank you for joining workshop and thanks for your attention

links

latest papers on pgll gonio-photometer & links:

- "Experimental validation of bidirectional reflection and transmission distribution measurements of specular and scattering materials," SPIE 2010, Brüssel, http://dx.doi.org/10.1117/12.854011
- "New scanning gonio-photometer for extended BRTF measurements" SPIE 2010, San Diego, http://dx.doi.org/10.1117/12.860889
- currently installed pgII gonio-photometers:
 SERIS Singapore, LBNL Berkeley, pab Freiburg, industrial client Europe
- pgll gonio-photometer webpage: http://www.pab.eu
- author's 1995 Phd: http://www.pab-opto.de/pers/phd/

\$RCSfile: brtf-talk.tex,v \$ \$Revision: 1.42 \$ \$Date: 2010/09/25 11:59:44 \$
contact info@pab.eu prior to commercial use.
compiled using LATEX beamer class

Peter Apian-Bennewitz (pab Ltd)

BRTF basics, measurement, modelling

22.9.2010 53 / 53