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optical properties (BSDF) described by mathematical function
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small number of tunable, understandable parameters
internally implemented in Radiance

~ fast rendering, compact description

KISS

... suitable candidates for comparison to measured BSDF data,
let's have a look at the general framework...
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sources and models of material data
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ces and models of material data

sources of Radiance material
material data descriptions
BSDF BSDF
measurements |
function files
estimates .
e.g. tho, tau - estimate errors caused
combinations by use of simple models:
mixfunc
libraries
|—p> BSDF by model
basic materials with optimal parameters
plastic,trans,metal = factor
guess > BSDF measured
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some details

... let's do some math and details ...
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coordinate system

sample

QOUI
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the defining formula

Qin=2m
»Cout()?out) — J‘ BSDF ()z}na )?out) ﬁin()z}n) COS(@in) d Qi
Xin

4 variables: BSDF (Xin, Xout) = BSDF (6in, $in, Gout , Pout )
BSDF > 0 and may be > 1
ideal diffuse surface: BSDF (Xi,, Xout) = const
transmission: 7gn(Xin) = | BSDF (Xin, Xout) €0S(6out )d Qout
errors in BSDF propagate to radiance Loyt
~> errors in glare analysis and irradiance on other surfaces

Qin=2m
Loyt OUtgoing, Liy incident radiance, [ integral over hemisphere, Qj, inf. solid angle
Xin

see pab talk at 2010 workshop for more math
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display of reflection part of BSDF (10°, 0°, Oout, Pout)

8 cole § mirie i 40w 02w s 0

"scattering plane”



visualising BSDF 2D

plot of 2D cut along scattering plane:

model plastic , sample bme—fm-certilel , in=(010.0,000.0)
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Radiance BSDF model: pl asti c

"plastic” Gaussian-Ward BSDF model: constant + Gaussian
~ (RGB —s) + S e~ (/"*
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BSDF data source

pab pgll gonio-photometer, high dynamic range, fast, precise:

light sources
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BSDF measurement statistics

side note: currently installed pgll gonio-photometers at
SERIS, LBNL, industrial and pab Ltd now accumulated

approx 600 samples
around 12000 measurements
approx 100 million BSDF data-points
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fitting process, from data to model parameters

for each material and incident direction (i, ¢in):

1

2
3
4
5

measure dataset BSDF (6in, ¢in, 0L, ¢but)s i = [1... ~ 80000]

run fit program to find optimal parameters a,...ay of model

= set of parameters a;...ay for each incident direction

get error x := 3, (BSDF™%! — BSDFda12)2 and min/max factors
generate graphics, repeat process for next incident angle

generate web-page
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measure dataset BSDF (6in, ¢in, 0L, ¢but)s i = [1... ~ 80000]

run fit program to find optimal parameters a,...ay of model

= set of parameters a;...ay for each incident direction

get error x := 3, (BSDF™%! — BSDFda12)2 and min/max factors
generate graphics, repeat process for next incident angle

generate web-page

ideal situation:

a; depend only on material, constant for all incident angles
overall error x is low, min/max factors close to 1

real situation:

a; do depend on incident angle
X is not negligible (model shape doesn’t match data)
some systematic errors between model and data
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parameter numbering on BME web-pages

technical note:
generic numbering of model parameters for these fits:

voi d plastic nypl ast

0

0

5 R GB specularity roughness
al a2 a3
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"building material examples” web page

BME BSODF gallery

teflsctive material modets using the Rediancs plestic model
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conclusions from BME measurements:

for practitioners

"mildly specular” materials at incident angles < 70°
typically around 20% error
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for practitioners
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typically around 20% error

metallic specular surfaces or larger incident angles:
larger errors, up to 100x for backscattering

BME web-pages with quantitative data available for self-study
errors in model ~>10x measurement uncertainty

for developers
systematic deviations between model and data
~ implementing new BSDF models in Radiance ?
BME BSDF data available with high resolution, low error
results and BME web-pages with details
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last slide.

yours to discover: www.pab.eu/bme

more BSDF math at 2010 pab workshop talk,
plus more measurement details: www.pab.eu/radiance

happy rendering
thank you for joining workshop and thanks for your attention
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